
Bilkent University

Department of Computer Science

Senior Design Project
Project Name: PriceWise
Detailed Design Report

Group: T2323

Tuğberk Dikmen, 21802480
Deniz Hayri Özay, 21803632
Mehmet Ali Öztürk, 21703425

Mete Arıkan, 21902316
Furkan Yıldırım, 21902514

Supervisor: Shervin Rahimzadeh Arashloo
Jury Members: Atakan Erdem, Mert Bıçakçı

March 15, 2024
This report is submitted to the Department of Computer Engineering of Bilkent University in
partial fulfillment of the requirements of the Senior Design Project course CS491/2.

1



Table of Contents

1. Introduction 3
1.1 Purpose of the system 3

1.2 Design goals 3
1.2.1 Functional Goals: 3
1.2.2 Non-Functional Goals: 4

1.3 Definitions, acronyms, and abbreviations 5
1.4 Overview 5

2. Current software architecture 6
2.1. Similar Websites 6

2.1.1. Epey.com 6
2.1.2. Cimri.com 6

2.2. PriceWise 6
3. Proposed software architecture 7

3.1 Overview 7
3.2 Subsystem decomposition 7
3.3 Persistent data management 10
3.4 Access control and security 10

4. Subsystem services 11
4.1. User Interface 12
4.2. Firebase Authentication 13
4.3. Firestore Database Persistent Data Management 13
4.4. Firebase Hosting 14
4.5. Firebase Machine Learning 14

5. Test Cases 14
6. Consideration of Various Factors in Engineering Design 20

6.1 Constraints 20
6.2 Standards 21
6.3 Other Considerations 22

7. Teamwork Details 23
7.1 Contributing and functioning effectively on the team 23
7.2 Helping creating a collaborative and inclusive environment 23
7.3 Taking lead role and sharing leadership on the team 23

References 24

2



1. Introduction

The Pricewise system serves as a solution to address the challenges caused by

fluctuating prices of products in the Turkish markets. With the increasing inflation and

frequent price changes, consumers face difficulties in determining the most cost-effective

options for their purchases. The purpose of the Pricewise system is to empower users with the

ability to compare prices across different markets, facilitating informed purchasing decisions.

By utilizing advanced features such as machine learning-based recommendations and

real-time price tracking, Pricewise aims to provide users with shopping suggestions and

opportunities to save money.

1.1 Purpose of the system

The primary goal of the Pricewise system is to offer users a comprehensive platform

for price comparison and optimization of their shopping lists. With the data from various

market chains and developing numerous algorithms, the system aims to deliver accurate and

timely information on product prices and availability. Additionally, the system helps users to

enhance convenience and efficiency by enabling the creation and management of shopping

lists, personalized recommendations and notifications for discounts and special offers.

1.2 Design goals
The design goals of the PriceWise system can be considered both functional and

non-functional requirements which aim to offer optimized user experience.

1.2.1 Functional Goals:

- Facilitate price comparison among multiple markets and different brands.

- Provide users with personalized shopping recommendations based on their

preferences and purchasing history.

- Ensure data privacy and security through authentication and encryption.

- Offer a user-friendly interface and efficient list management functionalities.

3



- Enable real-time updates on product prices, availability and promotions to enhance

user decision-making.

- Support scalability and adaptability to accommodate future growth and evolving user

needs.

1.2.2 Non-Functional Goals:

Usability:

- Provide an user-friendly interface to increase the quality of user experience.

- Implement efficient methods for adding and managing items in shopping lists

and offer various optimized shopping lists.

Reliability:

- Maintain accuracy and accurate information on product prices and sales.

- Regularly update prices through automated algorithms while allowing manual

updates by admins.

- Ensure high availability of the application except during scheduled

maintenance periods.

Performance:

- Achieve minimal response times under a specified time to ensure

responsiveness.

- Handle high request traffic during peak periods, such as holidays and sales

events.

Supportability:

- Support different versions of Android and iOS operating systems to maximize

accessibility.

Scalability:

- Design the system to handle increasing user traffic and data volume over time.

Security:

4



- Implement robust measures to secure user information, including usernames,

emails, and passwords, against unauthorized access.

1.3 Definitions, acronyms, and abbreviations

UI: User Interface. This is the point of human-computer interaction and

communication in a device. In the PriceWise application it includes the screen of a

smartphone.

API: Application Programming Interface. This is a way for two or more computer

programs or components to communicate with each other.

ML: Machine Learning. This can be defined as the capability of the machine to

imitate intelligent human behavior.

DB: Database. A structured set of data held in a computer, especially one that is

accessible in various ways.

Android: Android Operating System. Android OS is a linux-based mobile operating

system that primarily runs on smartphones.

iOS: iPhone Operating System. An operating system used for mobile devices

manufactured by Apple Inc.

1.4 Overview

The Pricewise system will be designed as a mobile application designed to reform the

way users approach shopping comparisons and decision making. With the power of

technology, Pricewise aims to empower consumers with valuable information and practical

tools to enhance their shopping experience and maximize their savings. From real-time price

tracking to personalized recommendations, the system offers a variety of features to increase

user satisfaction and their money.

5



2. Current software architecture
In this section, the functionalities of the existing systems and the areas where they

lack according to our observations will be discussed briefly. At the end of this section, what

we want to improve in the marketplace will be explained by describing the unique attributes

of PriceWise and its differences between the current systems.

2.1. Similar Websites

2.1.1. Epey.com

Epey.com functions as a platform where users can search for products and compare

their prices across various stores [1]. However, Epey.com offers only technological gadgets,

kitchenware, and other durable items like shampoo, toothpaste, and olive oil. Notably, it lacks

a selection of everyday grocery items such as chocolate, milk, or soda. It also does not

provide a feature enabling users to create shopping lists nor have any built-in product

recommendation system.

2.1.2. Cimri.com

Just like Epey.com, Cimri.com also offers price comparisons for identical products

[2]. Moreover, it features a section named "cimri markette," enabling users to browse grocery

items and construct shopping lists. However, if a product is unavailable at a store, Cimri.com

does not suggest any alternative product. The website also has no recommendation system to

split the grocery list among multiple stores. Therefore, the website restricts users to shopping

from a single store at once, which limits its ability to deliver the most budget-friendly

solution.

2.2. PriceWise

PriceWise aims to gather the functionalities of Epey.com and Cimri.com that are

mentioned in the previous subsection and build upon them with its additional abilities that

have no counterparts in the current marketplace. Unlike other platforms such as Cimri,

PriceWise’s shopping list features will be dynamic as it will provide extra suggestions to

6



users to customize their shopping lists further. Firstly, when the users want to compute the

total price of their shopping lists, it won’t just calculate single-store list alternatives but will

show the users all the possible shopping list alterations that also include the ones with

multiple stores. For example, let's say there are 2 stores called Store A and Store B in the

system. The current architecture creates only separate lists for Store A and Store B.

PriceWise will provide both singular store lists and also a split list alternative which consists

of both Store A and Store B. The prices vary a lot among different stores even if they sell

identical products. Thanks to this, the users will have the opportunity to obtain the cheapest

possible list as the algorithm will compare the prices from both stores for each item and

choose the minimum one. Additionally, if the users can not find a certain product they want,

the system will recommend similar available products based on their preferences with the

help of machine learning algorithms.

3. Proposed software architecture

3.1 Overview
In this section, the general architecture of the software and the subsystem

decomposition are discussed. In order to explain PriceWise’s architecture, firstly, the system

is decomposed into different layers and modules. We used Uses Style, Modular Style and

Decomposition Style in our UML diagram which are generally accepted software architecture

schema styles. Later on, in the Persistent Data Management Style, how the system’s database

operates with the scraped data is explained in detail. Finally, in the Access Control and

Security subsection, the security measurements and access-permission boundaries of the

users are discussed. In general, we aim to describe how the different parts of the system

function with each other in this section.

3.2 Subsystem decomposition

The Pricewise system is organized into several subsystems, each responsible for

distinct functionalities and components. This decomposition enhances modularity, scalability,

and maintainability throughout the system.

UI Layer:

7



The UI layer is built using the Flutter framework which uses its extensive set of

widgets and tools for creating visually appealing and interactive user interfaces.

Utilizes Flutter/Dart libraries to enhance UI functionality and improves development

processes.

Backend Layer:

Handles backend operations, including user authentication, data storage, and machine

learning integration.

Incorporates Firebase Authentication to manage user authentication securely and it

will integrate with the ML part for predictive analytics and recommendation functionalities.

Data Layer:

Manages the storage and retrieval of data used by the system.

Leverages Firebase Database as the primary data storage solution, offering real-time

data synchronization and scalable data storage capabilities.

Scraping Module:

Performs web scraping operations to gather product information from external

sources.

Retrieves relevant data from online marketplaces and stores it in the Firebase DB for

further processing and testing.

8



Figure 1. Subsystem Architecture Schema

9



3.3 Persistent data management

In the persistent data management section of our detailed design report, we highlight

the utilization of Firebase Firestore and its authentication services as central components of

our data management strategy. Firebase Firestore is a highly scalable NoSQL cloud database

that facilitates the storing, syncing, and querying of data for mobile, web, and server

development. Its NoSQL format is particularly advantageous for our application as it allows

for flexible data structures and the efficient storage of complex, hierarchical data, such as

Products, User Shopping Lists, and additional user-specific information. This flexibility is

crucial in accommodating the dynamic nature of user data and product inventories, ensuring

swift and efficient data retrieval. Moreover, Firestore's real-time data syncing capabilities

enhance the user experience by providing immediate feedback and updates (real-time), which

is essential for features like real-time shopping lists and inventory management.

Additionally, the integration of Firebase's authentication services streamlines the login

and signup processes, securely managing user credentials and personal information. By

storing user information within the authentication services, we leverage Firebase's robust

security protocols to protect sensitive data while simplifying the authentication flow for

users. This separation of concerns not only enhances security but also optimizes the

performance by using Firestore for application-specific data like Products and User Shopping

Lists. Communication with Firestore and the Authentication services is conducted through

Firebase queries, mirroring a REST API's request and response model. This approach enables

a structured and efficient way of managing data transactions, allowing for clear and concise

data handling operations, including creating, reading, updating, and deleting records (CRUD

operations). The combination of Firestore's NoSQL database with Firebase's authentication

services presents a cohesive, secure, and scalable solution for managing persistent data,

essential for delivering a seamless and responsive user experience.

3.4 Access control and security
Apart from the administrators, there is only one type of user which is a regular user.

All of the users will benefit from the same functionalities, and have the same accesses and

permissions. The users will be able to search for a product, see the prices, create grocery lists,

and get alternative products and list recommendations from the system. Users will not be able

10



to interact with other users in any way. They won’t be able to view or modify other users’

shopping lists, nor view other users at all. By doing this, we aim to prevent any incidents that

can harm user experience.

The users will authenticate from Firebase which is certified under major privacy and

security standards [3]. The information of the products and the machine learning algorithms

will also be hosted in the Firebase system.

Before getting any recommendations, users will be asked to allow the system to

collect data from their shopping list actions. In order to show the most precise

recommendations to users, the system firstly has to be trained with their previous list actions

to learn their preferences. The collected data will only be used to improve the

recommendation system. Other than this exception, no user data will be used or shared in any

way.

4. Subsystem services
The subsystem services of our application are crucial in ensuring a seamless, secure,

and personalized user experience. Below, we divided subsystem services into 5 subsystems

and their components or services.

11



4.1. User Interface

Figure 2. User Interface Subsystem Diagram

The User Interface (UI) subsystem is designed to work for both general users and

administrators, ensuring a simple and efficient interaction with the application. It comprises

seven key components:

● User View: The primary interface for end-users, offering a personalized dashboard

that provides access to various features like shopping lists, product searches, and

profile management.

● Admin View: A specialized interface for administrators to manage application

settings, user accounts, product listings, and view analytics.

● List View: Allows users to create, modify, view and calculate total price of their

shopping lists, enhancing the shopping experience by keeping track of items to

purchase.

● Profile View: Enables users to manage their personal information, preferences, and

view their deleted list history within the application.

● Authentication View: A secure portal for user login and registration, supporting both

traditional and Google sign-in methods to accommodate user preferences.

12



● Search View: Offers a robust search functionality, allowing users to quickly find

products by keywords, categories, or tags.

● Item View: Displays detailed information about products, including descriptions,

prices, and related items, facilitating informed purchasing decisions.

Figure 3. FireBase Components Subsystem Relation Diagram

4.2. Firebase Authentication
Firebase Authentication provides a comprehensive identity solution, handling secure

user signup and sign-in processes. It supports a variety of authentication methods, including

email/password and Google sign-in, ensuring flexibility and accessibility for users. This

subsystem is integral to maintaining the security and integrity of user accounts, safeguarding

personal information and preferences.

4.3. Firestore Database Persistent Data Management
Our application's persistent data management is the Firestore Database. This NoSQL

database is for handling real-time data storage and synchronization across user interactions. It

is organized into three primary collections:

13



● Products: Stores detailed information about the inventory, including descriptions,

pricing, categories, product images and similar alternatives of the product.

● Users: Contains user profiles, including authentication details, preferences, and

interaction histories, to personalize the user experience.

● Lists:Manages shopping lists created by users, tracking items they intend to purchase

or explore further. In addition to that stores deleted shopping lists for further use.

4.4. Firebase Hosting
Firebase Hosting provides a fast, secure, and reliable way to host our web application

globally. It ensures that our application is accessible from anywhere, on any device, with

minimal latency. This hosting solution seamlessly integrates with other Firebase services,

enabling automatic scaling to handle varying levels of traffic and ensuring a consistent,

high-performance user experience.

4.5. Firebase Machine Learning
Integrating Firebase Machine Learning into our application brings a layer of

intelligence and personalization. We utilize a Recurrent Neural Network (RNN) model,

developed with TensorFlow, to analyze user behavior and preferences. This model is hosted

online (Firebase Hosting), allowing it to continuously learn and improve its recommendations

for user-based item suggestions. It dynamically adapts to user interactions, enhancing the

relevance of product recommendations and personalized content, ultimately increasing the

shopping experience.

5. Test Cases
Test ID: T-001 Sign In

Requirements: Ensure that registered users can sign in successfully.

Entry Conditions: Application should be opened, and the current user must not be logged in.

Exit Conditions: Users either successfully sign in or choose to continue as a non-registered

user.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

14



2. Click the sign-in button. Sign-in page is displayed.

3. Fill in the required e-mail,
password fields.

Required fields are filled
with user credentials.

4. Click the sign-in button. Sign-in is successful,
navigated to the main page.

5. Attempt to navigate to the
search item page without
signing in.

Redirected to the sign-in or
registration page.

Test ID: T-002 Sign Up

Requirements: Ensure that non-registered users can register successfully.

Entry Conditions: Application should be opened, and the current user must not be logged in.

Exit Conditions: Users either successfully register or choose to cancel the registration.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Click the Signup button. Signup page is displayed.

3. Fill in the required e-mail,
full name, password,
confirm password fields.

Required fields are filled
with new user information.

4. Click the register button. Registration is successful,
navigated to the main page.

5. Attempt to register with
existing credentials.

Information message
displayed, prompting for
Sign Up success status.

Test ID: T-003 Search an Item

Requirements: Ensure that users (registered or non-registered) can search for items

successfully.

15



Entry Conditions: Open the application, be a registered user or non-registered user, and

navigate to the search item page.

Exit Conditions: Users can navigate to another page after searching.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Sign in. User is signed in
successfully.

3. Click on the Search page
button.

Search page is displayed.

4. Enter any item in the
search box.

Relevant search results for
the item are displayed.

5. Select an item from the
search results.

Item details page is
displayed.

6. Click the back button. Navigated back to the search
results page.

Test ID: T-004 View Suggested Shopping List

Requirements: Ensure that users can view suggested shopping lists successfully.

Entry Conditions: Open the application.

Exit Conditions: Users click the back button after viewing.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Sign in. User is signed in
successfully.

3. Click to the desired list. List’s contained items and
their total price is displayed.

4. Click on a suggested list
displayed.

Suggested shopping list
details are displayed.

16



5. Click the back button. Navigated back to the
previous page.

Test ID: T-005 Modifying Shopping List

Requirements: Ensure that users can modify a shopping list successfully.

Entry Conditions: Open the application and have at least one shopping list created.

Exit Conditions: Users click the back button after modifying a shopping list.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Sign in. User is signed in
successfully.

3. Click to the desired list. List’s contained items and
their total price is displayed.

4. Decrease or increase the
count of the item desired.

Selected shopping list item
count and total price
updated.

5. Click on the Modify
Shopping List button.

List modification options are
displayed.

6. Make changes to the
shopping list (change the
name, icon or color of list).

Changes are saved, and an
updated list is displayed.

7. Click the back button. Navigated back to the
previous page.

Test ID: T-006 View Sales

Requirements: Ensure that users can view current sales successfully.

Entry Conditions: Open the application.

Exit Conditions: Users click the back button after viewing sales.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

17



2. Sign in. User is signed in
successfully.

3. Click on the Sales page
button.

Sales page is displayed with
current sales listed.

4. Select any sale item
listed.

Selected sale item details are
displayed.

5. Click the back button. Navigated back to the
previous page.

Test ID: T-007 View Past Shopping Lists

Requirements: Ensure that registered users can view their past shopping lists successfully.

Entry Conditions: Open the application and the user must be logged in.

Exit Conditions: User clicks on another page button after viewing.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Sign in. User is signed in
successfully.

3. Click on Profile button. Profile page with user
credentials is displayed.

4. Click on View Past
Shopping Lists button.

Page displaying past
shopping lists is displayed.

5. Select and click on any
past list displayed.

Details of the selected past
shopping list are displayed.

6. Click on another page
button.

Navigated away from the
past shopping lists page.

Test ID: T-008 View Preferences Personalized Shopping Lists

Requirements: Ensure that registered users can personalize and view suggested shopping lists

based on preferences.

18



Entry Conditions: Open the application, should have created a list and the user must be

logged in.

Exit Conditions: User is able to modify and view the personalized list.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Sign in. User is signed in
successfully.

3. Go to the Lists page. Lists page is displayed.

4. Select the Suggested List. Suggested list based on user
preferences is displayed.

5. Change the products
according to desires (delete/
add product).

Products and the total price
of the list are successfully
changed in the list.

6. Click the Back button. Navigated back to the Lists
page.

Test ID: T-009 Update Database

Requirements: Ensure that admins can update the database successfully.

Entry Conditions: Admin must open the application.

Exit Conditions: Admin clicks the Back button after updating.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Go to Duty page. Duty page for admin tasks is
displayed.

3. Click the Update
Database button.

Update Database interface is
displayed.

4. Perform the necessary
updates.

Updates are successfully
applied to the database.

19



5. Click the Back button. Navigated back to the Duty
page.

Test ID: T-010 Send Notification

Requirements: Ensure that admins can send notifications to users successfully.

Entry Conditions: Admin must open the application.

Exit Conditions: Admin clicks the Back button after sending a notification.

Test Steps Outcome Pass/Fail

1. Open the application. Application launches
successfully.

2. Go to Duty page. Duty page for admin tasks is
displayed.

3. Click the Send
Notification button.

Notification sending
interface is displayed.

4. Enter the message and
recipient details.

Message and recipient
details are correctly entered.

5. Click the Send button. Notification is sent
successfully.

6. Click the Back button. Navigated back to the Duty
page.

6. Consideration of Various Factors in Engineering Design

6.1 Constraints
Technical Constraints:

Data Availability: The availability and quality of data from various sources, including

web scraping causes constraints on the design and functionality of the system.

Performance (Real-Time Updates): Updates in the products and pricing information

are crucial for maintaining the accuracy and reliability of the platform. To ensure quick

updates, optimization techniques will be explored to minimize processing delays and

20



maximize application speed. This is why application speed directly impacts user experience.

With slower response times leading to reduced user satisfaction and engagement.

Platform Compatibility: Compatibility with different platforms and devices such as;

mobile devices, must be considered to ensure a seamless user experience across various

environments.

Integration Challenges: Integration with external systems such as; Firebase for

database management and machine learning frameworks for predictive analysis may present

technical challenges that need to be addressed during the design phase.

Time Constraints:

Project Schedule: The project timeline and deadlines for delivering the final product

may impose time constraints on the design, development, and testing phases. Adopting an

iterative development approach like Agile methodology, can help manage time constraints.

6.2 Standards

Data Standards:

Data Integrity: Adherence to data integrity standards ensures the accuracy and

reliability of information processed and stored by the system.

Privacy and Security: Compliance with data privacy regulations, implementation of

security practices preserve user data against unauthorized access and misuse.

Software Development Standards:

Coding Practices: Following coding standards, such as code readability, modularity,

and reliability enhances the maintainability and extensibility of the application.

Testing Standards: Adoption of testing standards validates the functionality and

performance of the system more properly and detects the potential problems in advance in the

application.

User Experience Standards:

21



Accessibility: User experience standards ensure that the application is usable by all

individuals and provides a smooth user experience and it helps to optimize for ease of use and

efficiency.

6.3 Other Considerations

Public Health and Safety

The PriceWise system ensures that all products adhere to public health and safety

regulations. In addition, PriceWise utilizes data from market chains that are officially

recognized and regulated by relevant ministers. This ensures that the products listed on the

platform meet certain standards of quality, safety, and legality as determined by the

authorities. By sourcing data from these established market chains, Pricewise aims to provide

users with reliable and trustworthy information for their shopping needs.

Public Welfare

The system aims to enhance public welfare by providing users with tools and

information to make informed purchasing decisions, thereby promoting affordability,

accessibility, and fairness in the marketplace.

Economic Factors

Economic considerations influence pricing strategies and product recommendations

within the system. The platform aims to provide cost-effective solutions for consumers while

supporting fair competition and sustainable business practices among markets.

Social Factors

Social factors such as consumer preferences and discounted products will be within

the system algorithms. The platform adapts to changing user preferences to adopt relevant

and impactful shopping experiences.

22



7. Teamwork Details

7.1 Contributing and functioning effectively on the team
As Algorteam, we have Discord meetings almost every week where we regularly

report to each other. Being online may give the impression that productivity is low, but

productive meetings take place thanks to features such as being able to show our work on the

computer or meeting at any time and anywhere. Our meetings are always full staff and

everyone actively talks about their ideas. Finally, we decide what we need to do until the next

meeting date. Even though there were 5 people in the group, we divided our project into three

main headings. Everyone has contributed greatly to each other's knowledge in these areas and

we are in a much more advanced position than we were at the beginning of the year.

7.2 Helping creating a collaborative and inclusive environment
We divided our project into front-end, back-end and scraping. With the previous

experience, our group's total knowledge in front-end and back-end sections was more than

scraping. Since the most important part of our project was with data, we had to improve

ourselves about scraping. Many of us have done research on scraping and improved

ourselves. Sometimes, when problems arose, we tried to overcome these problems together.

7.3 Taking lead role and sharing leadership on the team
There are people who basically coordinate the three parts of the project. We try to

solve problems together and in this case it increases efficiency. In these meetings, everyone

puts forward their ideas about a problem and we try to choose the best outcome from these

ideas together. It makes our job easier when everyone takes ownership of the project as a

leader.

23



References

[1] “Her şeyi Karşılaştır,” Epey, https://www.epey.com/ (accessed March 12, 2024).

[2] “CIMRI - Fiyat Karşılaştırma,” Google, https://www.cimri.com/market (accessed March
12, 2024).

[3] “Privacy and security in Firebase,” Firebase, https://firebase.google.com/support/privacy
(accessed Mar. 12, 2024).

24


